Helioseismology: seismology of the Sun

The Sun oscillates and vibrates at many frequencies, like an ocean surface or …like a bell. Certain frequencies are amplified by constructive interference(wave propagation) and the turbulence “rings” the sun like a bell. Unfortunately, sound does not carry through the vacuum between the Sun and the earth, so we have to “listen" to the oscillations by looking at the motions of material on the surface of the Sun. With the right instruments, scientists can "hear" this ringing or pulsations from the Sun. To do this, they use an instrument called a Michelson Doppler Imager (MDI), mounted on the SOHO spacecraft and the Helioseismic and Magnetic Imager (HMI), one of the three instruments that make up the Solar Dynamics Observatory (SDO).

Although direct study of its interior is impossible —mostly because the Sun is nearly opaque to electromagnetic energy, insights into the conditions within the Sun may be gained by observing oscillating waves, rhythmic inward and outward motions of its visible surface. These oscillations on the surface are due to sound waves generated and trapped inside the sun. Sound waves are produced by pressure fluctuations in the turbulent convective motions of the sun’s interior. These trapped sound waves set the sun vibrating in millions of different patterns or modes. Using this acoustic energy, we can “see into the Sun”, just as geologists use seismic waves to study the structure of the Earth, the discipline of helioseismology makes use of acoustic pressure waves (infrasound) traversing the Sun’s interior. These oscillations are seen as volumes of gas called granules near the Sun’s surface that rise and fall with a particular frequency. It is like seeing the rolling motions of convection cells on the surface of  boiling water. This happens very close to the surface where the flow of energy that started in the nuclear reactions in the core reaches the surface and suddenly escapes. The sound from the convection is then trapped and filtered inside the sun to produce the solar music

Helioseismologists can use the properties of these waves to determine the temperature, density, composition, and motion of the interior of the sun. The spectral lines emitted from gas moving upwards will be slightly Doppler-shifted to the blue; spectral lines from gas moving downwards will be slightly Doppler-shifted to the red. In this way the rolling motions of convection near the Sun’s surface can be mapped out. There are three types of oscillations. Pressure modes (p-modes) are sound waves trapped in the temperature gradient (like an echo bouncing around inside a cavern). Fundamental modes (f-modes) or surface gravity waves are caused by gravitational interactions with the sun’s surface and resemble ocean waves. Gravity modes (g-modes) are not completely understood, but they are believed to be the result of buoyancy effects. All the known pressure and fundamental modes (some 10 million) have oscillation periods of less than 18 minutes, and most are around 5 minutes. The gravity modes are not known conclusively to exist, but they are predicted to have periods of 40 minutes or longer (160-min).

Further readings:

As Seen by STEREO-A: The Carrington-Class CME of 2012

STEREO (Solar TErrestrial RElations Observatory) is a solar observation mission, it consists of two space-based observatories - one ahead of Earth in its orbit (STEREO-A), the other trailing behind (STEREO-B). The two nearly identical spacecraft were launched in 2006 into orbits around the Sun that cause them to respectively pull farther ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.

STEREO-A, at a position along Earth’s orbit where it has an unobstructed view of the far side of the Sun, could clearly observe possibly the most powerful coronal mass ejection (CME) of solar cyle 24 on July 23, 2012. The flare erupted in the lower right quadrant of the solar disk from a large active region. The material launched into space in a direction towards STEREO-A. This created the ring-like ‘halo’ CME visible in the STEREO-A coronagraph, COR-2 (blue circular image). As the CME expanded beyond the field of view of the COR-2 imager, the high energy particles reached STEREO-A, and caused the snow-like noise in the image. Researchers have been analyzing the data ever since, and they have concluded that the storm was one of the strongest in recorded history. It might have been stronger than the Carrington Event itself.

The solar storm of 1859, also known as the Carrington Event, was a powerful geomagnetic solar storm in 1859 during solar cycle 10. A solar flare or coronal mass ejection hit Earth’s magnetosphere and induced the largest known solar storm, which was observed and recorded by Richard C. Carrington. The intense geomagnetic storm caused global telegraph lines to spark, setting fire to some telegraph offices and disabling the ‘Victorian Internet.” A similar storm today could have a catastrophic effect on modern power grids and telecommunication networks.

Credit: NASA’s Scientific Visualization Studio

Jupiter’s Irregular Satellites

The planet Jupiter has 67 confirmed moons. This gives it the largest retinue of moons with “reasonably secure” orbits of any planet in the Solar System. In fact, Jupiter and its moons are like a miniature solar system with the inner moons orbiting faster than the others. Eight of Jupiter’s moons are regular satellites, with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter’s equatorial plane. The remainder of Jupiter’s moons are irregular satellites, whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. There are 17 recently discovered irregular satellites that have not yet been named.

Image Credit: NASA/ESA/Lowell Observatory/J. Spencer/JHU-APL

Jupiter’s Irregular Satellites

The planet Jupiter has 67 confirmed moons. This gives it the largest retinue of moons with “reasonably secure” orbits of any planet in the Solar System. In fact, Jupiter and its moons are like a miniature solar system with the inner moons orbiting faster than the others. Eight of Jupiter’s moons are regular satellites, with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter’s equatorial plane. The remainder of Jupiter’s moons are irregular satellites, whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. There are 17 recently discovered irregular satellites that have not yet been named.

Image Credit: NASA/ESA/Lowell Observatory/J. Spencer/JHU-APL

Quick Rosetta update:

This is the shape model of comet 67P/Churyumov-Gerasimenko. From the images taken on 14 July, the OSIRIS team has begun modelling the comet’s three-dimensional shape. The animated gif presented here covers one full rotation of the nucleus around its spin axis, to emphasise the lobate structure of the comet. This model will be refined as more data becomes available – it is still a preliminary shape model and some features may be artefacts.

More information: here
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Quick Rosetta update:

This is the shape model of comet 67P/Churyumov-Gerasimenko. From the images taken on 14 July, the OSIRIS team has begun modelling the comet’s three-dimensional shape. The animated gif presented here covers one full rotation of the nucleus around its spin axis, to emphasise the lobate structure of the comet. This model will be refined as more data becomes available – it is still a preliminary shape model and some features may be artefacts.

  • More information: here

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Animations of Saturn’s aurorae

Earth isn’t the only planet in the solar system with spectacular light shows. Both Jupiter and Saturn have magnetic fields much stronger than Earth’s. Auroras also have been observed on the surfaces of Venus, Mars and even on moons (e.g. Io, Europa, and Ganymede). The auroras on Saturn are created when solar wind particles are channeled into the planet’s magnetic field toward its poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light. Aurora features on Saturn can also be caused by electromagnetic waves generated when its moons move through the plasma that fills the planet’s magnetosphere.  The main source is the small moon Enceladus, which ejects water vapor from the geysers on its south pole, a portion of which is ionized. The interaction between Saturn’s magnetosphere and the solar wind generates bright oval aurorae around the planet’s poles observed in visible, infrared and ultraviolet light. The aurorae of Saturn are highly variable. Their location and brightness strongly depends on the Solar wind pressure: the aurorae become brighter and move closer to the poles when the Solar wind pressure increases.

Credit: ESA/Hubble (M. Kornmesser & L. Calçada)

Stereoscopic View of the Lunar Surface

Apollo 11 carried a number of cameras for collecting data and recording various aspects of the mission, including a 35-mm surface close-up stereoscopic camera. It was designed for the highest possible resolution of a 3-inch square area with a flash illumination and fixed distance. Photography was accomplished by holding the camera on a walking stick against the object to be photographed. The camera was powered by four nickel-cadmium batteries that operated the motor-drive mechanism and an electronic flash strobe light.

There are many details seen in these pictures that were not known previously or that could not be seen with similar definition by astronauts Armstrong and Aldrin in their careful inspection of the lunar surface. The photographs taken on the mission with the close-up stereoscopic camera are of outstanding quality and show in detail the nature of the lunar surface material. From the photographs, information can be derived about the small-scale lunar surface geologic features and about processes occurring on the surface.

Image Credit: John Lloyd/NASA

July 20, 1969: One Giant Leap For Mankind

Astronaut Buzz Aldrin descending the ladder and stepping onto the Moon.  Neil Armstrong's “one small step” onto the lunar surface was actually a 3-foot jump down off the lunar module’s ladder to the ground.

Credit: NASA

July 20, 1969: One Giant Leap For Mankind

Astronaut Buzz Aldrin descending the ladder and stepping onto the Moon.  Neil Armstrong's “one small step” onto the lunar surface was actually a 3-foot jump down off the lunar module’s ladder to the ground.

Credit: NASA

Fundamental Studies in Droplet Combustion and FLame EXtinguishment in Microgravity (FLEX-2)

The Flame Extinguishment - 2 (FLEX-2) experiment is the second experiment to fly on the ISS which uses small droplets of fuel to study the special spherical characteristics of burning fuel droplets in space. The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding how fuels burn in microgravity could improve the efficiency of fuel mixtures used for interplanetary missions by reducing cost and weight. It could also lead to improved safety measures for manned spacecraft.

  • More information: here

Credit: Reid Wiseman/NASA

(Source: youtube.com)

Titan’s Atmosphere

Titan is the largest moon of Saturn. It is the only natural satellite known to have a dense atmosphere, and the only object other than Earth for which clear evidence of stable bodies of surface liquid has been found

Titan is primarily composed of water ice and rocky material. Much as with Venus prior to the Space Age, the dense, opaque atmosphere prevented understanding of Titan’s surface until new information accumulated with the arrival of the Cassini–Huygens mission in 2004, including the discovery of liquid hydrocarbon lakes in Titan’s polar regions.

The atmosphere is largely nitrogen; minor components lead to the formation of methane and ethane clouds and nitrogen-rich organic smog. Titan’s lower gravity means that its atmosphere is far more extended than Earth’s and about 1.19 times as massive. It supports opaque haze layers that block most visible light from the Sun and other sources and renders Titan’s surface features obscure. Atmospheric methane creates a greenhouse effect on Titan’s surface, without which Titan would be far colder. Conversely, haze in Titan’s atmosphere contributes to an anti-greenhouse effect by reflecting sunlight back into space, cancelling a portion of the greenhouse effect warming and making its surface significantly colder than its upper atmosphere.

Titan’s clouds, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze.The findings of the Huygens probe indicate that Titan’s atmosphere periodically rains liquid methane and other organic compounds onto its surface. Clouds typically cover 1% of Titan’s disk, though outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the southern summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only after the southern summer solstice but also during mid-spring.

Image Credit: NASA/JPL/Space Science Institute

Saturn’s Rings and Enceladus

Saturn’s most distinctive feature is the thousands of rings that orbit the planet. Despite the fact that the rings look like continuous hoops of matter encircling the giant planet, each ring is actually made of tiny individual particles. Saturn’s rings consist largely of water ice mixed with smaller amounts of dust and rocky matter. Data from the Cassini spacecraft indicate that the environment around the rings is like an atmosphere, composed principally of molecular oxygen.

The ring system is divided into 5 major components: the G, F, A, B, and C rings, listed from outside to inside (but in reality, these major divisions are subdivided into thousands of individual ringlets). The F and G rings are thin and difficult to see, while the A, B, and C rings are broad and easily visible. The large gap between the A ring and and the B ring is called the Cassini division. One of Saturn’s moons, namely; Enceladus is the source of Saturn’s E-ring. The moon’s geyser-like jets create a gigantic halo of ice, dust, and gas that helps feed Saturn’s E ring.

Enceladus has a profound effect on Saturn and its environment. It’s the only moon in our solar system known to substantially influence the chemical composition of its parent planet. The whole magnetic environment of Saturn is weighed down by the material spewing from Enceladus, which becomes plasma — a gas of electrically charged particles.  This plasma, which creates a donut-shaped cloud around Saturn, is then snatched by Saturn’s A-ring, which acts like a giant sponge where the plasma is absorbed. 

Credit: , NASA/JPL/SSI

Saturn’s Rings at Maximum Tilt

In March 2003, Saturn’s rings were at maximum tilt toward Earth, a special event occurring every 15 years. With the rings fully tilted, astronomers get the best views of the planet’s Southern Hemisphere. They took advantage of the rings’ unique alignment by using Hubble to capture some stunning images.

Credit: NASA, ESA, E. Karkoschka, G. Bacon (STScI)

Saturn’s Rings at Maximum Tilt

In March 2003, Saturn’s rings were at maximum tilt toward Earth, a special event occurring every 15 years. With the rings fully tilted, astronomers get the best views of the planet’s Southern Hemisphere. They took advantage of the rings’ unique alignment by using Hubble to capture some stunning images.

Credit: NASA, ESA, E. Karkoschka, G. Bacon (STScI)

The Cassini spacecraft’s narrow angle camera captured Saturn’s moon Rhea as it gradually slipped into the planet’s shadow – an event known as “ingress”. 
Credit: NASA/JPL/Space Science Institute

The Cassini spacecraft’s narrow angle camera captured Saturn’s moon Rhea as it gradually slipped into the planet’s shadow – an event known as “ingress”.

Credit: NASA/JPL/Space Science Institute

Dark Gamma Ray Bursts

An artist’s conception of the environment around GRB 020819B based on ALMA observations. The GRB occurred in an arm of a galaxy in the constellation of Pisces (The Fishes). GRBs are huge explosions of a star spouting high-speed jets in a direction toward the observer. In a complete surprise, less gas was observed than expected, and correspondingly much more dust, making some GRBs appear as “dark GRBs”.

Gamma-ray bursts (GRBs) are intense bursts of extremely high energy observed in distant galaxies — the brightest explosive phenomenon in the Universe. Bursts that last more than a couple of seconds are known as long-duration gamma-ray bursts (LGRBs) and are associated with supernova explosions — powerful detonations at the ends of the lives of massive stars.

In just a matter of seconds, a typical burst releases as much energy as the Sun will in its entire ten-billion-year lifetime. The explosion itself is often followed by a slowly fading emission, known as an afterglow, which is thought to be created by collisions between the ejected material and the surrounding gas. However, some gamma-ray bursts mysteriously seem to have no afterglow — they are referred to as dark bursts. One possible explanation is that clouds of dust absorb the afterglow radiation.

  • More information: here

Credit: Bunyo Hatsukade(NAOJ), ALMA (ESO/NAOJ/NRAO)

Rocky planets are thought to form through the random collision and sticking together of what are initially microscopic particles in the disc of material around a star. These tiny grains, known as cosmic dust, are similar to very fine soot or sand. Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have found that the outer region of a dusty disc encircling a brown dwarf — a star-like object, but one too small to shine brightly like a star — also contains millimetre-sized solid grains like those found in denser discs around newborn stars. The finding challenges theories of how rocky, Earth-scale planets form, and suggests that rocky planets may be even more common in the Universe than expected.

Credit: ALMA (ESO/NAOJ/NRAO)/L. Calçada (ESO)/M. Kornmesser, J. Freitag, S. Messenger

Our Two Faced Moon

Because the Moon is tidally locked, it was not until 1959 that the farside was first imaged by the Soviet Luna 3 spacecraft (hence the Russian names for prominent farside features, such as Mare Moscoviense). And what a surprise -­ unlike the widespread maria on the nearside, basaltic volcanism was restricted to a relatively few, smaller regions on the farside, and the battered highlands crust dominated. Of course the cause of the farside/nearside asymmetry is an interesting scientific question. Past studies have shown that the crust on the farside is thicker, but why is the farside crust thicker? This mystery is called the Lunar Farside Highlands Problem.
Now scientists may have solved the 55-year-old mystery. The general consensus on the moon’s origin is that it probably formed shortly after the Earth and was the result of a Mars-sized object hitting Earth with a glancing, but devastating impact. This Giant Impact Hypothesis suggests that the outer layers of the Earth and the object were flung into space and eventually formed the moon. The moon, being much smaller than Earth cooled more quickly. Because the Earth and the moon were tidally locked from the beginning, the still hot Earth — more than 2500 degrees Celsius — radiated towards the near side of the moon. The far side, away from the boiling Earth, slowly cooled, while the Earth-facing side was kept molten creating a temperature gradient between the two halves. This gradient was important for crustal formation on the moon. The moon’s crust has high concentrations of aluminum and calcium, elements that are very hard to vaporize.
Aluminum and calcium would have preferentially condensed in the atmosphere of the cold side of the moon because the nearside was still too hot. Thousands to millions of years later, these elements combined with silicates in the moon’s mantle to form plagioclase feldspars, which eventually moved to the surface and formed the moon’s crust. The farside crust had more of these minerals and is thicker.
The moon has now completely cooled and is not molten below the surface. Earlier in its history, large meteoroids struck the nearside of the moon and punched through the crust, releasing the vast lakes of basaltic lava that formed the nearside maria that make up the man in the moon. When meteoroids struck the farside of the moon, in most cases the crust was too thick and no magmatic basalt welled up, creating the dark side of the moon with valleys, craters and highlands, but almost no maria.

Credit: ESO/M. Kornmesser, Penn State/A’ndrea Elyse Messer

Our Two Faced Moon

Because the Moon is tidally locked, it was not until 1959 that the farside was first imaged by the Soviet Luna 3 spacecraft (hence the Russian names for prominent farside features, such as Mare Moscoviense). And what a surprise -­ unlike the widespread maria on the nearside, basaltic volcanism was restricted to a relatively few, smaller regions on the farside, and the battered highlands crust dominated. Of course the cause of the farside/nearside asymmetry is an interesting scientific question. Past studies have shown that the crust on the farside is thicker, but why is the farside crust thicker? This mystery is called the Lunar Farside Highlands Problem.

Now scientists may have solved the 55-year-old mystery. The general consensus on the moon’s origin is that it probably formed shortly after the Earth and was the result of a Mars-sized object hitting Earth with a glancing, but devastating impact. This Giant Impact Hypothesis suggests that the outer layers of the Earth and the object were flung into space and eventually formed the moon. The moon, being much smaller than Earth cooled more quickly. Because the Earth and the moon were tidally locked from the beginning, the still hot Earth — more than 2500 degrees Celsius — radiated towards the near side of the moon. The far side, away from the boiling Earth, slowly cooled, while the Earth-facing side was kept molten creating a temperature gradient between the two halves. This gradient was important for crustal formation on the moon. The moon’s crust has high concentrations of aluminum and calcium, elements that are very hard to vaporize.

Aluminum and calcium would have preferentially condensed in the atmosphere of the cold side of the moon because the nearside was still too hot. Thousands to millions of years later, these elements combined with silicates in the moon’s mantle to form plagioclase feldspars, which eventually moved to the surface and formed the moon’s crust. The farside crust had more of these minerals and is thicker.

The moon has now completely cooled and is not molten below the surface. Earlier in its history, large meteoroids struck the nearside of the moon and punched through the crust, releasing the vast lakes of basaltic lava that formed the nearside maria that make up the man in the moon. When meteoroids struck the farside of the moon, in most cases the crust was too thick and no magmatic basalt welled up, creating the dark side of the moon with valleys, craters and highlands, but almost no maria.

Credit: ESO/M. Kornmesser, Penn State/A’ndrea Elyse Messer

(Source: news.psu.edu)